

STALITE Lightweight Aggregate Physical Characteristics ROAD MATERIAL APPLICATIONS Certified test reports available

	Units	Values
Absorption		
Asphalt Absorption (ASTM D2041)	%	48
Soundness (%Loss)		
Freeze-Thaw	%	0.30 - 0.90
Toughness		
Los Angeles Abrasion (AASHTO T96)	%	25-28
Bulk Specific Gravity		
Retained on the #8 Sieve (ASTM C127)	Size Retained	1.66
Flakiness Index		
5/16" Road Material	%	8.28
BPN (British Pendulum Number)		
Lightweight 5/16" over 78M Granite Split Seal (ASTM E 303-93)	BPN	85

^{*} As measured by the ESCSI One Point Proctor Test. This test is a modified version of the ASTM D 698 "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort" that was developed because of the cohesion-less nature of lightweight aggregate. In the test, the aggregate sample is placed in a 0.5 cubic foot bucket at the moisture content that the aggregate will be delivered to the project site. The sample is placed in three equal layers and compacted by dropping a 5.5 pound rammer from a distance of 12 inches 25 times on each layer. Updated 1/1/18